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On the basis of a numerical solution of the Stefan problem, the dynamics of nano- 
second laser annealing of silicon is investigated. 

The annealing of ion-implanted semiconductor layers by nanosecond laser pulses has re- 
cently been investigated intensively. This problem has not only a great applied but also, 
in principle, a theoretical value since its study permits better understanding of the physics 
of the crystallization process as a whole. 

Two nanosecond laser annealing mechanisms are known most, thermal and plasma, If it is 
assumed in the first model that restoration of the crystalline structure occurs after short- 
range melting and subsequent crystallization of the melt, then in the plasma model annealing 
is associated with the formation of a dense electron-hole plasma under the action of the laser 
pulse. 

The temperature of a silicon surface under laser heating was measured by different meth- 
ods in [1-6]. On the basis of the experiment data, deductions were made about the applica- 
bility of any model. Thus, if the results in [2-6] are in agreement with the melting model, 
then the silicon temperature determined by the Ramanscattering method is anomalously low 
(<600~ which verifies the plasma method in the opinion of the authors of [I]. 

At this time the overwhelming majority of researches tend towards the melting model; how- 
ever, as is shown in a number of theoretical and experimental papers, the plasma effects can 
play a definite part, especially in the area of the prethreshold exposure modes [7]. 

Starting from the thermal model of annealing in this paper, we solve the problem of melt- 
ing and crystallization of a semiconducting layer under the action of a nanosecond laser pulse. 
Utilization of a numerical method permitted taking account of temperature and spatial depend- 
ences of the optical and thermophysical semiconductor parameters as well as the actual shape 
of the laser pulse. Results of a computation are compared with experimental data obtained 
earlier in investigating the dynamics of silicon annealing by a monopulse ruby laser (% = 0.69 
um, t e = 80 nsec) [5, 6]. The measured values of the temperature and the "lifetime" of the 
melt are in good agreement with the computation. 

The generation of "hot" electrons and holes occurs under the effect of intense laser emis- 
sion with quantum energies exceeding the forbidden-band width, and in a time on the order of 
10 -*2 sec these electrons and holes relax in energy with the emission of phonons. As a result 
of such interband relaxation, the temperatures of the electron and lattice subsystems are equi- 
librated. At such high excitation levels as hold for laser annealing, the Auger phenomenon 
plays the main role. For an electron--hole plasma with initial concentration I0 -=~ cm -s the 
effective lifetime is ~10 -I~ sec and the corresponding diffusion length for the nonequilibri- 
um carriers is small compared with the degree of radiation absorption. This permits neglect- 
ing the contribution of the nonequilibrium electron-hole pairs to heat transfer. 

During energy transfer from the excited carriers to the lattice, nonequilibrium phonons 
occur that do not succeed in relaxing completely during the pulse. However, the contribution 
of the nonequilibrium phonons to the heat conduction is sufficiently small and can 5e neg- 
lected [7]. 

The heat-conduction equation corresponds to a macroscopic description that is valid un- 
der conditions when the temperature changes insignificantly in the phonon mean free path. In 
our case this corresponds to satisfying the inequality 
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Fig. i. Computational time dependences of 
the thickness of a melted layer for implant- 
ed (i, 3, 5) and monocrystalline (2, 4, 6) 
silicon at exposure energy densities of 1.5 
J/cm 2 (i, 2); 2.5 J/cm 2 (3, 4); 3.5 J/cm = (5, 
6). d m in ~m, and t in ~sec. 

cpS <<max ~-i, V c p J  

Using the characteristic values of the parameters, it is easy to show that this inequality is 
satisfied. 

Therefore, for pulses of nanosecond duration the state of the semiconductor region to be 
annealed can be described by a temperature field that is determined from the heat-conduction 
equation, while the corresponding thermophysical and optical coefficients are taken for equi- 
librium conditions. 

In our case it is convenient to formulate the problem of semiconductor heating and melt- 
ing as follows: 

p (T) [C (T) + Lm6 (T - -  Tin)] ,gT _ 
at 

OT [ = 0 ,  T ( x = d ,  t ) = T ( x ,  t = O ) = O ,  
Ox Ix=o 

r<r , k(r)= 
C(T)=  C~, T>T,~,  kz, T > T m ,  

p (T) = { ps, r < Tm, r T < r=, 
9,, T > T m ,  taz, T > T m .  

1 Ox ~x +cz(T, x)[1--R(dm)]q(t)exp[__Sdx'~(T,x')] , 
0 

(i) 

The second term in the right side of (i) describes heat liberation due to absorption of 
laser radiation. The coefficient of light absorption in the solid phase ~s depends explicit- 
ly on the coordinate x; the difference between the absorption coefficients of the amorphized 
layer and the monocrystalline substrate is thereby taken into account. In the solid phase 
the silicon reflection coefficient at the ruby laser wavelength is practically independent of 
the temperature and equals 0.35 (0.45) for the monocrystalline (amorphous) atate. From the 
beginning of the melting, the reflectivity grows as the melt layer thickness d m increases and 
reaches the value 0.72 corresponding to the melt. In specific computations below we use the 
computational dependence R(dm) presented in [8]. 

The term with the d function in the left side of (I) assures continuity of the heat flux 
on the crystal--melt interface with the latent heat of the phase transition taken into account. 
The advantage of formulating the phase transition problem in the form of (i) is especially per- 
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ceptible when utilizing numerical methods since there is no necessity explicitly to extract 
the solid and liquid phase boundary in this case, and the computation can be performed by the 
ripple-through computation method by the ordinary difference scheme. 

The method of smoothing [9, i0], whose crux is that the 6 function is approximated hy a 
6-1ike function that is different from zero in a finite temperature interval near the phase 
transition point, was used to solve the problem (i). The smoothed effective coefficient of 
heat conduction was also introduced. In our case, the 6-1ike function was approximated by a 
rectangular pulse whose width was chosen automatically during the computation, and in such a 
manner that two points of the mesh were within it. 

We will consequently have a quasilinear heat-conduction equation with an effective spe- 
cific heat and heat conductivity. We shall seek the solution of this equation by the method 
of finite differences in the domain O~x~L, t~O Since a surface layer of several micro- 
meters succeeds in being heated during the pulse, the quantity L can be taken very much small- 
er than the specimen thickness but at the same time considerably greater than the depth of 
heating. 

L e t  us  i n t r o d u c e  t h e  n o n u n i f o r m  mesh ~h~={xi, i = 0 ,  1 . . . . .  N; Xo=0, x ~ = L ,  t j = ] ~ , ] = 0 ,  1 . . . .  }. 
The partition interval along the x axis was chosen variable since the temperature gradient 
near the surface is substantially greater than in the bulk. Consequently, the quantity of 
partition points is diminished significantly, and the volume of the calculations is corre- 
spondingly reduced. 

We use an implicit linear difference scheme for the numerical solution of the quasilin- 
ear heat-conduction equation. This scheme is absolutely stable, and in the class of discon- 
tinuous coefficients is apparently of first-order accuracy in the time and the coordinate [9, 
1 0 ] .  

We have a system of N + i linear algebraic equations 

A i T ~ _ I - - C i T ~ + B ~ T i + I = - - F i ,  i =  1, 2 . . . . .  N - - l ,  

To(1 +Bo) = BoT1 + Fo, (2 )  

~N = 0 

to find the temperature field at the time tj+x = T(j + i). 

The coefficients of the system (2) are expressed in terms of known values of the tem- 
perature on the previous time layer tj = Tj and are the following: 

Ai = "~e(Ti-l/2) B~ = "ck(Ti+l/2) Ci -= 1 + Ai + Bi, 
(Z i) hi-lhi ' ~ (Z i) hihi ' 

Fi = x~(Ti,  xi) [ 1 - - R ( d ~ ) l q ( t  = ti+l/2) • 
(r~) 

i~l 
{ l E h l ~ [ ~  Xh)-I-ot(Th+I, Xh+l)]} ~- X exp - -  2 

h=0 
+ T ~ ,  i =  1, 2, . . .  , N - - l ,  

B0= ~f(r,/2) Fo-- zo:(To, O) [l_R~d,.)lq(t=ti+,/2)+ yo, 
(To) hg ' C (To) 

2~, (Ti) k (T~+_0 

(3) 

Here  T~ = T~ = T(x~, tj), T~ : T{ +I, hl = x~+l--x~, ~ = (h~ + hi_l)/2, ti+~/2 = T(] § 1/2) ;  a t  i n i t i a l  t i m e  
Ti ~ = O. 

The difference boundary value problem (2), (3) was solved by the factorization method 
on a BESM-6 computer. Specific calculations were performed for the case of the effect of a 
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ruby laser monopulse, where two versions were examined: that of monocrystalline silicon and 
a 100-rim-thick amorphous layer on a monocrystalline substrate. 

The range of variation of x was chosen at 26 ~m and partitioned into 400 intervals as 
follows: h i = 0.01 ~m, 0~_i~199; h i = 0.04 ~m,~200_~<i~299; h i = 0.2 ~m, 300~.~i~399 . 
The spacing in the time T was selected at 0.2 nsec. The pulse shape was approximated 
by a Gauss function with 80 nsec half-width and 160 nsec duration along the base. The 
temperature dependence of only those quantities that depend substantially on T was taken 
into account in the computations. This refers to the quantities ks, as, and C s for which em- 
pirical formulas for (ks, a s ) presented in [ii] and (Cs) presented in [12] were used (the 
quantity a s was taken to be different for the amorphous layer and the monocrystalline sub- 
strate). The dependence 0z(T) for the melt, for which data was taken from [13], was also 
taken into account in the computations. The following values were used for the remaining 
quantities: 0s = 2.3 g/cm 3, C Z = 0.97 J~g'K, Lm = 1800 J/g, T m = 1683~ k I = 0.585 W/cm'K, 
a l = 106 cm -~. 

The thermophysical parameters of the amorphous layer and the monocrystalline substrate 
were taken identical in the computation of the dynamics of heating and melting implanted sili- 
con. Taking their difference into account for a pulse energy >1.5 J/cm 2 cannot substantially 
influence the results of the computation. Indeed, estimates show that the energy difference 
needed for the heating and melting of amorphous and monocrystalline silicon layers i00 nm 
thick is ~0,02 J/cm 2, i.e., is negligible in comparison with the total absorbed energy. Hence, 
in the computations it would be sufficient to take into account the amorphous layer reflec- 
tion and absorption coefficients that have changed in comparison with the monocrystal. 

It follows from the computation (Fig. i) that the degree of melting for W = 1.5 J/cm = 
somewhat exceeds the thickness of the ion-doped layer, i.e., the annealing threshold in the 
computation is close to 1.5 J/cm 2, which is in agreement with its experimental value deter- 
mined earlier in [14]. Taking into account the higher R and a s of the amorphous layer as com- 
pared with the monocrystal results in nonmonotonicity in the changes in the computed velocity 
of the melting front motion, as well as a severalfold diminution in its initial magnitude. 

The maximal temperature of the melt (Fig. 2) is achieved 20 nsec after the time corre- 
sponding to the apex of the pulse. After termination of the effect of the pulse, the sur- 
face temperature diminished to T m and remained at this level up to termination of melt crys- 
tallization. This is verified by the results of a pyrometric investigation of the laser an- 
nealing dynamics [5, 6]; the thermal radiation of the melt reaches maximal intensity 10-15 
nsec later than the peak pulse power, and the plateau corresponding to the period of melt iso- 
thermy and lasting up to the drop in the elevated reflectivity of the latter is seen clearly 
in the thermal radiation oscillograms. 

It also follows from the computation results that the rate of surface temperature rise 
of the implanted silicon is retarded with the appearance of a thin melt layer. A nonmono- 
tonic change in the velocity of surface temperature rise and of melt front motion that holds 
in implanted silicon and is missing in the monocrystal case is apparently due to the substan- 
tial difference (for equal W) in radiation flux magnitudes (I -- R)q absorbed by either speci- 
men at times when the surface temperature reaches T m. 

It can be concluded from a comparison [5] of the computed and experimental dependences 
of the maximal temperature of the exposed surface and the "lifetime" of the melt on the en- 
ergy density (Fig. 3) that the mentioned dependences are in good enough agreement (the "life- 
time" of the melt or, equivalently, the annealing time is determined by the period of ele- 
vated reflectivity of the exposed surface). 

Therefore, the results of computing the dynamics of nanosecond laser annealing, obtained 
on the basis of a numerical solution of the Stefan problem, are in good agreement with experi- 
ment, and yield a sufficiently convincing confirmation of the melting model. 

NOTATION 

T(x, t), temperature field; x, t, coordinate and time, respectively; Tm, melting point; 
L m, latent heat of melting; 0s(l), Cs(l), ks(Z ) , as(Z), density, specific heat, heat conduc- 
tion, and coefficient of absorption of the solid (s) and liquid (Z) phases; R, coefficient 
of radiation reflection; q(t), laser radiation flux density; d, plate thickness; C(T), k(T), 
effective specific heat and heat conductivity; hi, T, coordinate and time spacings; 0, ini- 
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Fig. 2. Computed time dependences of the surface temperature of implanted (i, 3, 
5) and monocrystalline (2, 4, 6) silicon at exposure energy densities of 1.5 J/cm= 
(i, 2); 2.5 J/cm 2 (3, 4); 3.5 J/cm = (5, 6). T in ~ and t in ~sec. 

Fig. 3. Comparison between the experimental [5, 6] and computed data: 1-4) ex- 
perimental values of T M determined from measuring the brightness (I, 3) and the 
color (2, 4) temperatures of the monocrystalline (I, 2) and implanted (3, 4) sili- 
con surface; 5, 6) experimental values of ra for both silicons, respectively; 7- 
i0) computed dependences of the maximal surface temperature T M (9, i0) and melt 
"lifetime" ~a (7, 8) on the exposure energy density W; solid curves are for mono- 
crystalline silicon, while the dashed lines are for implanted silicon. T M in ~ 
T a in psec; W in J/cm =. 

tial temperature; W and tp, laser pulse energy density and halfwidth; TM, maximal surface tem- 
perature. 
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HEAT-CONDUCTION PROBLEM FOR A PLATE WITH A SQUARE CUT 

Yu. M. Kolyano, V. I. Gromovyk, and Ya. T. Karpa UDC 536.24.02 

A method of determining the steady temperature field in a thin plate with a square 
cut is proposed on the basis of the theory of function continuation. 

Consider a plate of thickness 26 with a square cut, at the surface lx, l = b, [x,[ < b; 
[xal = b, IxxI < b of which a heat flux q/26 is specified, i.e., 

~T,ill,~il= o N (xi+O -= -T- -~s N (xi:i:l), i -= 1, 2, (I) 

where N(xi) = S+(x i + b) -- S_(x i -- b) are asymmetric functions of the cut; T,i = 3T/~xi; the 
subscript i • 1 in Eq. (i) means that 

i : k l : ~ 2 '  i---- 1, 
1, i ----2; 

at infinity the temperature is zero. The cut dimension 2b is commensurate with the plate 
thickness 26. 

The heat-conduction equation for determining the temperature field in the given plate 
takes the form [i] 

AT = • 
( 2 )  

where z ~ = = �9 
~6 

0~ 0 ~ 
A = iOx--" ~ k ~Ox-" ~ i s  t h e  L a p l a c i a n  o p e r a t o r .  

Introducing the function 

O = T N ( x l ,  x~), 

where N(xx, xa) = i -- N(x,)N(x2), its first and second derivatives with respect to xt, x2 
take the form 

(3) 

where 

0,~ = T , iN  (xl,  xz) - -  [T ]~i=_b_06+ IX~ + b) - -  T [~i=b+06 (Xi - -  b)] N (xi+_1), 

O,u = T , u N  (xlx2) - -  [T,i [xi=-b-o6+ (x; + b) - -  T,; [~;=b+o6_ (x ; - -  b) + 

+ T~i=_b_o6+(x~ § b ) - - T ] ~ = b + O 6 " _ ( x i - - b ) ] N ( x i •  i =  1,2, 

a-+(O= dS+- (~t ; 81_(0 ds+_ (O 
d~ d~ 

(4) 
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